15-853: Spacial Decomposition and Parallelization in Autosim

Alexei Colin

April 19, 2013

1 Introduction

Within the upcoming decades autonomous vehi-
cles promise to revolutionize transportation. As the
robotic technology behind the driverless operation
matures, challenges at the next level of abstraction
become apparent: How should large numbers of au-
tonomous cars cooperate? How should they interact
with legacy cars? What roles should be delegated to
the road infrastructure?

A viable approach for investigating such ques-
tions is simulation of interacting collections of vehi-
cles. Autosim is an open-source simulator (developed
at CMU?) for the design and evaluation of behavioral
protocols based on vehicular communication. The be-
haviors and state of the cars are controlled by models
associated with each car, such as the mobility model,
or the communication model. At each time step, the
state of each car is updated by evaluating each of its
models. Figure 1 shows the front-end of the simula-
tor.

Autosim uses real-world maps annotated with
higher-level data, such as lane markings, and road
signs. The simulator supports hybrid mode in which
simulated cars are combined with replicas of real cars,
where the latter are based on measured data from the
real world. Hence, it can be used for simulating the
behavior of an autonomous vehicle among legacy cars
in real-time.

Simulator performance is a key concern. Since
city-wide simulations with dense traffic are of particu-
lar interest, computation cost should scale gracefully
with the number of vehicles. Furthermore, perfor-
mance is a functional requirement for hybrid simu-
lations, in which data from real vehicles places real-
time constraints on the simulated ones. The current
version of Autosim is limited to small-scale simula-
tions due to an unoptimized and sequential imple-
mentation. With the goal of enable larger simula-
tions, in this project we applied spatial decomposition
through a Quad-Tree and parallelization techniques
through a map-reduce paradigm.

The code repository for this project can be ac-
cessed from within the CMU network at git://
rtml-drkpcl.ece.cmu.edu/autosim.git.

IWhile it is a project in my research group, it is com-
pletely unrelated to my research, which is in power-aware CPU
scheduling.

Auto-sim

PAUSE
SimulationTime: 9.905 s

CAR LIST

‘s
V"

D
Type [l
NetworkAddress

Latitude

Longitude

Speed (mps)

Heading

Figure 1: Front-end of the Autosim simulator

2 Approach

2.1 Spatial decomposition

Some computations performed at each simulation
step concern only nearby cars within some region and,
thus, naturally benefit from spacial decomposition.
In this project we focused on the following computa-
tions:

e message exchange: cars communicate in or-
der to coordinate intersection crossing or com-
munal behaviors, such as follow-the-leader; each
car broadcasts messages which reach only cars
within a radius depending on the transmitter

e collision detection: each car updates its po-
sition based on a kinematic model without any
regard for other cars; hence, in order to detect
malfunction of interaction protocols, the simula-
tor needs to check for collisions at each step as
well as when a new car is inserted into the world

We replaced the O(n?) implementations for each
of the above tasks with an efficient range-query algo-
rithm based on a quad tree.

A quad tree was chosen over a simple grid-based
cell structure because in real road networks traffic
is clustered. In particular, intersections determine
clustering. Choosing a good cell size in a grid is not
generally applicable. A quad tree, on the other hand,
adapts to the clusters. The question of how other
spacial decomposition trees compare to quad trees is
left as future work. In practice, it was found that
even at moderate scale Autosim is very sensitive to
constant factors, which would guide the choice.

We next describe the two major challenges that
did not arise in the nearest-neighbor assignment and
our approach to them: maintaining the data struc-
ture current in precense of point movement and range
searching.

2.1.1 Incremental updates

Cars in the simulator move at each time step,
which means that for the range searches to be ac-
curate, the entries in the data structure needs to be
updated each time step. One option is to recompute
the tree from scratch. An option with lower overhead
is to remove and re-insert the points that left their
regions. However, it is possible to do slightly better
by observing that

e a car is likely to move within the same leaf region
e adjacent leaf regions, where a car ends up if it
does leave, are likely to be siblings or at least
share an ancestor a small number of levels above

These observations lead to an algorithm for incre-
mental updating of the tree. Instead of re-inserting
the removed point from the root, we start at its ex-
parent and traverse up the tree until a containing re-
gion is found, into which we perform the insert. The
observation implies that much of the time, we would
not need to traverse many levels upward. Since the
removed point might be the last one, as we traverse
upward, we coallesce (unsplit) the children of any par-
ents as long as all of them are empty.

2.1.2 Range search

In the Autosim application, the prevalent query
consists in finding the cars that are within a cer-
tain range of another car or an infrastructure ele-
ment, such as a traffic light. This is known as a
range search and is distinct from the nearest neighbor
query. For our application, we are only interested in
circular ranges.

As suggested in previous section, a quad tree is
expensive to maintain. However, we argue that it
is still profitable to do so. The cost of maintain-
ing the quad tree is amortized over multiple range
search queries within one simulation time step. Each
radio transmitter requires a query with a different
range. Two others are collision detection and prox-
imity check for the newly generated simulated cars.
The amortization aspect encourages extensions to
Autosim that require range search.

2.2 Parallelization

Within a simulation step, several tasks carried
out over the cars are independent. In particular,
physical model state can be updated in parallel fol-

Map size (m) 1000 x 1000
Road segments ~ 20
Intersections 15
Vehicles =~ 450
Communication range (m) 5-10
Collision range (m) i3

Figure 2: Experimental parameters (a subset).

lowed by a parallel collision check. We have paral-
lelized both using a map-filter-reduce framework pro-
vided by QtConcurrent.

While the incremental updates to the quad tree
remain a sequential bottleneck, we observe that this
cost is overshadowed by physical model updates and
collision checks, both of which where successfully par-
allelized (data not presented here).

3 Evaluation

3.1 Experimental setup

The experiments where conducted in Autosim.
Cars are continuously created and inserted into the
world at times according to a Poisson distribution. A
car stays in the world until it completes its path. The
workload during the simulation consisted of the inter-
section crossing negotiation under the default proto-
cols, default path planning, collision detection, and
message exchanges between cars. Both experiments
yielded similar results. We used a road network based
on data collected from the Pittsburgh area (cloned
and concatenated to form a larger map) and a syn-
thetic grid road network. Results are similar, and we
present only the results from the latter. Experimen-
tal parameters are given in Table 2.

Autosim configuration was extended to choose
the car registry implementation variant and to con-
trol the number of threads in the threadpool used by
QtConcurrent. We have also varied the number of
leaf nodes in the quad tree.

We have measured the CPU-clock and the wall-
clock time needed to simulate 120 s of virtual time.
The cpu-clock time was done at thread-level for se-
quantial code and at process level for parallel code.
Under parallel execution, the CPU time gives an in-
dication of the work performed. Also, we counted the
number of distance calculations made.

The measurements where performed us-
ing clock_gettime family of POSIX functions
3.4GHz/8GB machine running GNU/Linux. To
ensure there are no extraneous bottlenecks, the

Performance Gain and Overhead of Quad Tree

B List
[Quad Tree

2.5

20

=
n

Normmalized time
=
o

0.0

o0 eion] e S e ne

mm\,n'\@““co\\\s\n P\aceme“ wod! o'\’:‘a“te pat? U‘)dat 5'\“‘““‘
of

Figure 3: Performance gain and overhead of the range
search via quad tree

visualization code was completely decoupled and a
CLI-only compilation of Autosim was created for
this evaluation.

3.2 Spacial decomposition

Figure 3 shows the benefit from a quad tree as
well as its overhead as compared to the basic imple-
mentation using a generic container. It shows the
measured execution times for the respective parts of
the simulation workload.

The first three bars (Communication, Collision,
Placement) correspond to the three tasks that where
changed to use the range search query instead of an
O(n?) loops. There objective of decrease execution
time of these tasks was achieved.

‘Model’ bar corresponds to the physical model
state updates for each car, which do not require range
searching. It is shown to illustrate the subtasks for
which execution time did not significantly changed.
‘Distances’ is a count of pair-wise distances that had
to be computed (proportional to time). As expected,
the quad tree is able to dramatically reduce the num-
ber of pair-wise comparissons.

The overhead of the quad tree is captured by
'Data update’ bar. Compared to the cost of keeping
a list up to date, a quad tree is more than twice more
expensive. However, the proportion of time spent in
maintainance of the data structure is small (e.g. less
than 1% than the time spent in collision detection).
Hence, it does not prevent the total simulation time
(last bar) to improve.

Speedup of parallelized version
N List
16 [Quad Tree |{

0.0

Seq 1 2 3 4
Threadpool threads

Figure 4: Speedup achieved by parallel implementa-
tion

3.3 Speedup

We next investigated the benefit of paralleliza-
tion. Figure 4 shows the speedup achieved by the
implementation where some independent subparts
where parallelized as compared to its sequential al-
gorithm. The major tasks parallelized are the updat-
ing of physical models for each car and the collision
check.

Note that the same parallelized code utilizes the
range search of List and Ouad Tree implementations
of the car set. That is, in Figure 4 the emphasis
is on comparing the speedups within one algorithm
(instead of comparing List to Quad Tree).

Note that the thread counts do not include the
main thread, but only the threadpool threads. Hence,
the speed up for threadpool of thread one includes
work done by the master thread.

The graph shows that for our implementation
and the underlying Qt concurrency library, after two
threads, more threads come with prohibitive over-
head, which has a negative impact on the speedup.
The same can be seen in the measured CPU time
(which counts workload even when it is executed in
parallel): cpu time increases fafter two cores (data
not presented here).

We also note that both algorithms bnefit about
equally from the parallelism because what is paral-
lelized is largedy orthogonal to range search

4 Conclusion

Simulation of traffic is indispensible for develop-
ment of next-generation vehicular coordination pro-

tocols. For example, the Autosim simulator has been
successfully used for evaluating intersection protocols
for autonomous vehicles. The original implementa-
tion, however, was limited by its reliance on O(n?)
range searches and sequencial code.

We have addressed both limitations in this
project. Range queries are now serviced using a spa-
cial decomposition of the world map. An algorithm
for incrementally updating the tree was developed
and implemented. For further performance gain, col-
lision detection and model updates have been paral-
lelized and the overhead at higher thread counts was
exposed.

Future work may include a investigating whether
efficiency gain from a more advanced spacial decom-
position tree can be realized.

