A Model-Based Power Governor for Heterogeneous
Platforms

Alexei Colin, Milda Zizyte
Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA

Abstract—Applications on mobile devices have counter-
intuitively high resource demands. In the drive to satisfy these
demands CPUs with increasingly higher frequencies target such
devices. However, the new application possibilities for the user
opened by the gains in performance, are counter-balanced by
decreased battery life. This situation has inspired hardware and
software designs that aim to deliver the same performance at
lower energy consumption. One of the sources exploited for
energy savings is variability in the degree to which the workload
is CPU-bound. Armed with an estimate of the resources required
by the task, it is possible to scale down the frequency, hibernate
or shutdown a processing unit, or migrate to a low-frequency
and energy-saving core. We propose a model-based approach
to make all of the above decisions and evaluate it on Nvidia
Tegra3 platform as well as in a custom simulator. Our power
manager achieves better energy savings than the default power
management scheme, at the cost of increased lateness.

I. INTRODUCTION

Computational demands placed on mobile devices exceed
the demands that were placed on desktop systems in the recent
past. A mobile device, such as a smart-phone or a tablet
computer, is expected to act as a media acquisition device,
an end-point for multimedia consumption, a gaming platform,
and a secure communication device. Some of the above
applications require a minimum CPU operating frequency
to deliver an acceptable user experience and for many an
increase in processing capacity results in a quality-of-service
improvement. Thus, the market will continue to select for the
most raw performance per dollar in the near future.

Increased energy consumption and heat generation that
comes at the cost of higher operating frequency is severely
constraining this race for performance. A power budget re-
stricts the frequency, f by restricting V2 f, where the lower
bound on supply voltage, V, grows with f. Mobile devices
are influenced by these effects to the extreme. Their size
requirements limit the battery capacity since energy density
growth has not matched the growth in demand. The strictly
passive cooling has a low dissipation rate and must operate at
temperature levels tolerable by humans. Thus, designs of hard-
ware and software platforms that offer the most performance
per Watt are in high demand.

One potential source of energy savings is the variability
in the CPU demand of the workload over time. Idle phases
due to I/O, synchronization, or periodicity are present in
most workloads. Furthermore, extra cycles do not always
translate into an earlier task completion time due to stalls

on memory access. Whenever their utility is sufficiently low,
cycles can be spared by scaling down the voltage-frequency
level, hibernating or disabling processing units, or switching
to hardware that can perform less work per cycle in return
for reduced energy cost. The challenge common to all of the
above mechanisms is selecting the most efficient hardware
configuration based on the workload.

Dynamic Voltage Scaling (DVS) and idle/sleep states are
mechanisms that have been widely supported by hardware
and a variety of policies have been investigated and de-
ployed. In contrast, a recent addition to the repertoire of
implemented mechanisms is offered by Nvidia Tegra 3 SoC:
a heterogeneous platform that combines clusters of cores
with identical ISAs but different operating frequency range
and power characteristics. We propose a model-based power-
manager that exploits such heterogeneity by matching the
hardware configuration to the workload. The governor chooses
the most power-efficient cluster, number of online cores, and
frequency.

II. RELATED WORK

The common challenge of saving energy by exploiting
the workload variability has spawned a surprisingly diverse
set of problem definitions even within policies for the same
mechanism. This is due to the several possibilities for kind
of information available about the workload and the details of
the hardware implementation of the mechanism.

In real-time systems the timing properties of tasks are
known at design time and the completion time of a hard real-
time task is of equal value regardless as long as it meets its
deadline. Multiple heuristics for this scheduling problem have
been proposed for finding the schedule that trades off the slack
for energy by executing at a lower frequency [1]. Hints from
compiler or application have been used to determine relative
thread execution speed and slow down the ones that would
wait at synchronization points [2]. While the extra information
could enable efficient policies, a policy that does not depend
on any a priori information or application assistance is more
widely applicable and is our focus. Proposed strategies in this
category range from simple threshold logic for maintaining
CPU load at a constant level employed by the Linux kernel [3]
to heuristics based on learning [4] and control algorithms [5].

Long before the physical availability of heterogeneous plat-
forms, heuristics for task placement and task migration have

been proposed. Task placement is concerned with finding the
task to core assignment with least energy-delay in a model
where all cores execute concurrently [6]. Task migration, on
the other hand, is concerned with finding one optimal core
on which to execute in a model where only one core can be
active at a time. The approach in [7] avoids explicit model that
maps workload properties to energy consumption per core by
sampling potential destination cores for sample periods much
shorter than the scheduling quantum. The auto_hotplug
policy implemented by default in the Tegra 3 driver switches
clusters when a low enough VF level is set by the DVFS
governor [8].

III. APPROACH

A common DVFS approach is to gauge the workload by
the utilization of the task scheduling quanta in an interval
and classify the most recent interval as I/O- or performance-
bound. The classification of the next interval is estimated.
Low-utilization I/O bound intervals are then executed at a
lower frequency. However, on multi-core systems this strategy
is insufficient, since not only the optimal frequency but also the
optimal number of cores must chosen. The problem becomes
yet more complex on heterogeneous multi-core systems, where
the optimal subset of cores must be chosen based on their
power-performance profiles.

We propose a model-based approach for choosing the most
power-efficient hardware configuration given the system load.
We present an energy model for the class of heterogeneous
platforms where cores are grouped into clusters and each
cluster corresponds to a voltage-frequency domain. We employ
the model in the implementation of an in-kernel power-
management governor. At each time-step, the governor deter-
mines the needed computational capacity from current system
load and all possible hardware configurations of at least that
capacity are compared based on the energy modeled for each
for the following time-step.

A. Energy model

We model the power at the level of cores and clusters.
Each core contributes static power whenever it is online and
dynamic power whenever it is not idle. Each cluster contributes
uncore static power and dynamic power (e.g. the clock power).
Finally, an explicit term for the base system power is included
since all are measurements contain it (see Section IV).

A more formal definition of the model follows along with
a listing of inputs and parameters in Table 1.

E(Z, f7 w, ’LL) = PbusyAt + HdleAt

where At is the time-step of the governor and Py and Pge
are computed for corresponding values of z and w in the
following power model:

N
P(Z’fvw):B+ZZi (SzL_'—DzL(f)_FIDzP(vavw)))

name description
Ziy Zij on/off for any or of core j in cluster %
fi operating frequency of cluster ¢
w;,w; ; | busy/idle for any or of core j in cluster ¢
U total system load w.r.t. to total frequency
N number of clusters
N; number of cores in cluster ¢
B non-cpu power
Sk static power of cluster 4
Sr static power of core j
DE(f) uncore dynamic power of cluster i
D,f 5(f) | dynamic power of core j from cluster i
K, «a sub-parameters of D(f)
Fig. 1. Inputs and parameters for the power model.

where the core-specific component is
N;
PP (z, fw) = Zzzj (SJP + wi,ijj(f))
J
and dynamic power is estimated from

1
D(f) = 5CLVipf ~ K f*

For efficient fitting, we approximate this model with a linear
function by splitting D; ;(f) into a set of discrete values D; ; ;
and by setting o« = 3, which is a typical value.

As defined, the energy model is applicable to the class
of heterogeneous systems composed of cores grouped into
clusters with a per-cluster clock domain. Tegra3 processor is
one such system, albeit not the most general example due
to the constraint of a single active cluster. Figure 2 shows
the model predictions when fitted to the data measured on
Tegra3 (while clock-gated and with clock-gating disabled, only
the former set is shown in the figure). Note that the linear
approximation degrades the fit, however, for the purpose of
the comparison for the governor, only the relative values are
of consequence.

B. Instruction-level heterogeneity

Our power model incorporates differing power profiles of
different clusters, however it assumes that the power con-
sumption does not depend on the task being executed. This
is a simplification. In fact, in [7] Kumar et. al. argue that
on some platforms this instruction-level heterogeneity can be
be exploited to yield better energy-delay reduction than an
unaware DVFS. Whether this holds depends on the type and
degree of heterogeneity among the cores as well as on the
variability in the workload.

Our model can be extended with awareness of the match
between the task and the core type. To explore this direction,
we have investigated how does execution time and power
consumption vary for different tasks on Tegra 3 platform. Our
results in this direction are presented in V-C.

Power for different hardware states

T
* * Model
e o Measured
4@12000
4.0
4@110.0
4@1000
3.5 e
se129 *
3@110‘)
_3.0F : : e100 S .
é 4@36.0
5 201209 se76g
3 . .
a 2@1100
2.5 2e1008 .. 35
3@760
° *
* *
1@1203 Z@Eag o6
2@76 cl
2ol SE 8 LI
* 3@64 * *
1R ,@47{
*
2@@@. *
3B o
1.5 2947
1@9“
7
1@:
e i
1@34f
0:
Ly
1.0 L
0 1 4 5
Total freq (GHz)

Fig. 2. Measured power values for different Tegra3 hardware configurations
and corresponding modeled estimates. Blue configurations are for low-power
cluster, red — for high-power cluster.

IV. EXPERIMENTAL SETUP
A. Platform

The hardware used is a Google Nexus 7 tablet handheld
device with an nVidia Tegra 3 System on Chip. This system
is of interest as it is one of the first widely-deployed heteroge-
neous platforms. Its architecture is composed of two clusters of
cores: the high-power one with four cores and the low-power
one with one core. All cores are CortexA9 cores, which means
they export the same ARMv7 Instruction Set Architecture
(ISA) and implement it in the same way. However, the low-
power core is manufactured using a “special low-power silicon
process” [8], enabling lower power consumption but limiting
its maximum frequency to 475 MHz. Each cluster supports
DVFS within its own clock and voltage domain shared by
all cores in the cluster. The allowed frequency ranges for
the two clock domains are [340,1200] ! and [51,475] MHz,
respectively.

The hardware imposes several constraints. In particular,
only one cluster, either the high-power or the low-power, can
be active at any given time. Furthermore, cluster switch can
happen only when the high-power Core O is the only active
core. While our implementation of the governor abides by
these constraints, our overall strategy does not depend on this
restrictions to hold.

The Nexus 7 device runs a Linux kernel within the Android
operating system. The platform driver exports four logical

The upper limit is 1300 MHz if only one core in the cluster is running,
however, we do not make use of this.

Nexus 7

—— 4.0v
HP 34401A

Fig. 3. Power measurement instrument configuration

CPUs to the rest of the operating system. Hence, the existence
and usage of the low-power is transparent to the architecture-
independent layer of the operating system and to user-space
applications.

The manufacturer’s architecture-specific code implements
part of the functionality that traditionally belongs to the kernel,
including power policy. In particular, the auto_hotplug
component defines and implements the policy for the number
of online cores. It balances the load and consolidates tasks
across cores striving to keep the least number of active cores.
The same component decides on when to switch to and from
the low-power cluster based on the voltage/frequency level
chosen by the DVFS governor

For efficient data collection, we have implemented a
cpusetup script that implements a set of commands for
manipulating and monitoring the state of the CPUs (available
on our project website). Any core can be brought online or
offline, a switch to the low-power core can be forced, fre-
quency can be scaled to any supported level. This functionality
is implemented as sequences of reads and writes from the
relevant sysfs and debugfs interfaces to kernel and the
platform driver in particular.

B. Power measurement

To measure power consumption we replaced the device
battery with a variable voltage power supply fixed at 4.0V and
measured total system current as shown in Figure 3. The power
in Watts was calculated as P = IV = 4.0 x I. Note that the
total system voltage is a constant, despite any voltage scaling,
because it is measured on the input side of the regulators that
power the CPU. We are restricted to this approach since access
to the CPU regulator output is not exposed on the production
device.

An HP34401A multimeter was configured to sample the
current with an accuracy of 0.01 mA. The sampling period
determined by this accuracy level was 36ms. The data was
streamed over the RS-232 interface of the multimeter. The C-
Kermit scripts for configuration and acquisition as well as the
schematic for the customized null-modem cable are available
on our project website. We were unable to locate any vendor

software for this purpose.

The above setup implies that our values include the power
consumed by main memory and by all system peripherals,
including the display, wireless controller, and GPS receiver.
Our analysis is sound only for relative comparisons and only
when the power consumed by these devices is constant. We
ensured the latter condition by configuring a barebones kernel
with almost all device drivers excluded (incl. the networking
stack) with the assumption that an uninitialized device will
consume a constant amount of power or none at all. We
verified that the constant-power condition holds by observing
the baseline power at a fixed CPU state for several minutes.

For each run, the current data acquisition was launched
slightly after the benchmark process and ended slightly before
the benchmark process exited. This eliminated the process
preambles from the measurement interval since the power
consumption is likely to be different during these phases due
to e.g. file system access to service page faults or load core
dynamic libraries. We observed a standard deviation below
0.03W for all our experiments.

C. Micro-benchmarks

To study the performance at different hardware operating
points, we created two micro-benchmarks: a CPU-bound and a
memory-bound task. The perf tool (packaged with the kernel
source) was used to record the number of retired instructions,
I, and execution time, T°, in seconds, of each run of the bench-
mark process. The tool uses the kernel performance counter
interface that abstracts hardware and software counters.

Performance metric was then calculated as the normal-
ized completion time T. The process creation overhead was
included in the performance metric, however, we treat its
contribution as negligible.

Listings 1 and 2 show the respective source: a loop with a
sequence of arithmetic operations and a loop with a sequence
of loads and stores to far-apart addresses on the heap. The
allocated heap segment size and the access addresses were
chosen such that the target memory could not be all cached
at the same time. The number of iterations was chosen such
that the completions times are under two minutes at the lowest
frequency.

The CPU-bound task was written in assembly to avoid
confounding compiler optimizations and process preambles,
the latter of which cause an unwanted variation in the total
number of instructions from run to run. The same could be
done for the memory-bound task, but is not as crucial, since
what the overhead library code would add is more memory
accesses.

D. Synthetic workload

To evaluate the in-kernel implementation of the governor
(see Section V-A), we defined a simplified synthetic work-
load. The primary property of the workload is the degree to
which it can be rebalaced when core count changes. Since in
our current implementation, we model the load as perfectly

.text
.globl _start
_start:
mov %$r6, S$10
.LabelStartl:
mov %$r5, $0x10000000
.LabelStart2:
mov %$r0, $255
mov $rl, $232
mul $r3, %r0, %rl
add $r3, $214
rsb $r3, %rl
add $r4, %r3, %ro0
subs %$r5, %r5, $1
bne .LabelStart2
subs %$r6, %r6, S$1
bne .LabelStartl
Listing 1. CPU-bound microbenchmark

#define MEM_SIZE 4096x1024

int main (int

{

argc, char xargv[])

volatile long long x = atol (argv[l]);
volatile char c;
unsigned long 1 = 0;
char *m = (char *)malloc (MEM_SIZE);
while (x) {

c = m[i % MEM_SIZE];

m[(i+7) % MEM_SIZE] = c;

c = m[(i+13) % MEM_SIZE];

m[(i+27) % MEM_SIZE] = c;

i += 313;

x==;

}

return 0;

}

Listing 2. Memory-bound microbenchmark (abbreviated)

divisible (to limit the scope), we designed the workload to
approximate this assumption.

The workload consists of multiple threads each consuming
from a shared queue of work requests. Work is placed onto
the queue by a master thread that reads from a pre-generated
work trace file. Before adding a work request to the queue,
it is subdivided into a sequence of minimal chucks. Hence,
the rebalancing resolution is the size of the chunk, and is
independent of the work items in the work trace.

To generate the work trace, we draw inter-arrival times
from a geometric distribution (r = 0.5) and a work item
sizes from a uniform distribution (full range, lower-half, upper-
half). Maximum sized work item fully-utilizes the system for
one time-step at maximum compute capacity. To measure
response-time, the requests are time-stamped in the trace
and the worker-threads time-stamp each chunk when it gets
processed. Figure 4 shows an example of a work trace.

Workload
1.0 : :

o
o

°
IS

Work per time window

0.0 - =

Time

Fig. 4. Example work trace: inter-request times drawn from geometric
distribution (r = 0.5), request sizes draw from a uniform distribution over
full range.

E. Workload characterization

Given the earlier scope of the project, we explored sev-
eral benchmarking options, including MiBench [9], Imbench,
Spec2000, and Parsec. The first goal of Workload Character-
ization was to analyze what operation was being performed
within a time slice. In particular, we wished to determine
whether a certain slice of the program was doing a CPU or
Memory operation. In order to determine this, we measured
Instructions Per Cycle (IPC) over each 50ms interval. This
technique relies on the assumption that memory-bound tasks
have a smaller IPC than CPU-bound tasks. To measure Instruc-
tions Per Cycle, we utlized the unix perf_event_open() utility.
We ran a loop which, at every 50ms interval, would poll the
perf_event_open() utility for the current number of instructions
used and the current number of clock cycles consumed. This
was given a specific PID to run with. Thus, to measure work-
load, a child process running the benchmark may be forked
off and the script is then run. Currently, we have only run this
utility on an x86 architecture. However, we expect similar re-
sults for the Tegra architecture. We ran our perf_event_open()
wrapper code agains the MiBench benchmarks, which is useful
as it deals speficially with embedded applications, running
such tasks as compression and encryption.

While this initial exploration of workload was important to
establish future procedures and explore the current direction
of work, we recognize the need for further, more refined,
usage-specific measurements. In particular, to better describe
user interactions with a mobile device, we must create bench-
marks which must depend on user input. Tablet applications
inherently rely on user input: browsing relies on scrolling and
navigating, games rely on interaction, e-mail and calendars
rely on navigation, and so on. Moreover, we can exploit the
inherent partitioning in these tasks. This partitioning results

from waiting for user input. In this stage, the program or
application is more likely to be idle, and we may utilize the
ability to migrate to a smaller core. Consider the following
examples:

« Browsing: Without user input, webpage is loaded. Some
dynamic content might be displayed, but the CPU is
mostly idle. When user input occurs, the application must
process a query, make server requests, and render new
content. Once the webpage loads, we go back into a near-
idle state.

o Games: A background (which might be deterministically
animating) plays when a user is not interacting with the
device. User input requires computation - physics engine
computations, loading from buffer, rendering images -
depending on the game. Once user input is provided, CPU
might do heavier calculation for a while before resuming
normal operation.

o Typing input: While polling for user input into such
applications as calendar or e-mail does not consume
much CPU, the user activity is indicative of some active
computation later, such as network communication or dat
synchronization between apps.

In particular, except in the cases of heavy media playback,
which is always loading from memory/network and refreshing
screen or speaker output, the device is usually idle without
user input. Most applications can then be assumed to be
“background processes” until a user makes a specific request.
We denote waiting for user input as “I/O” phase. Note that
computations may be performed in I/O phase - in fact, this is
what differentiates the I/O phase from a sleeping device. Our
goal is to pinpoint these partitions of input and non-input in
order to optimize our migration strategies. The challenge lies
in measuring this usage. A possible approach is to base phase
recognition on CPU slice use percentage, like the technique
used in the current scheduler for priority assignment. We may
assume that if the CPU did not use the entire slice, then it is
waiting for user input - that is, in I/O phase. The workload
characterization problem thus becomes to assess the variance
of this CPU slice usage variable. For maximum impact with
respect to our approach, we anticipate that the optimal variance
is medium-size lengths of I/O versus CPU-heavy phases. That
is, these phases are long enough to justify the overhead of
switching cores. We would also like to characterize the vari-
ance in order to remove potential spikes that may incorrectly
partition the phases. If such spikes occur, future work would
be to explore smoothing algorithms to make the data more
reliable for our purposes.

V. RESULTS

To evaluate our model-based approach, we fitted the model
to Tegra3 power measurements and implemented a governor
in the Linux kernel for the Nexus 7 device. In addition, to
study the behavior of our scheme without the any confounding
effects of the real platform, we have built a custom simulator.

A. In-kernel

The governor was implemented in a kernel module and
the ftrace subsystem was used for detailed instrumentation.
Whenever the module is loaded and the governor is enabled,
the CPU load is monitored and periodically the hardware con-
figuration is re-evaluated. If the system load is below the top
threashold (95%), then the system is deemed over-provisioned
and a more power-efficient hardware state is searched based on
the modeled energy. If the system load is above the top thresh-
old (95%), then the system is deemed under-provisioned, and
the capacity is increased as follows. First, frequency is scaled
to the maximum without changing clusters or bringing cores
online. Next, if still under-provisioned, cluster is switched.
Next, if still under-provisioned, cores are brought up one by
one. This is a conservative strategy minimizes extra switching
at the cost of slower adaptability to the load.

To minimize the overhead of model evaluation, the power
values for busy and idle case for each hardware configuration
was precomputed stored in a radix tree keyed on the configura-
tion value. Although this is not scalable indefinitely, for Tegra
3, the total number of configurations is modest: 1 clusters * 4
cores * 8 frequency levels + 1 cluster * 1 core * 5 frequency
levels = 37 configurations.

Figure 5 shows the governor in action. As the CPU load
changes, both due to new workload and due to underprovision-
ing (top), the governor switches to a different cluster, brings
cores online/offline, and/or scales frequency (bottom), which
results in a changed total compute capacity (middle).

Figure 6 shows a comparison of the proposed scheme with
performance governor and ondemand governor coupled with
auto-hotplug manager. The performance governor does not
modify any hardware state, but keeps the maximum number of
cores on at the maximum frequency. The ondemand governor
keeps the system utilization at around 70% by scaling the
frequency. The cluster switching and core count control is
done by architecture-specific auto-hotplug which attempts to
keep the least numbers of cores on. While our scheme yields
savings in energy at the same computation time, it does so at
the expense of timeliness. The large response times indicate
that work items are being delayed. The compute time does
not increase since there is sufficient slack in the workload
(system is not completely utilized) to complete the work before
it accumulates.

B. Simulation

In order to explore the effectiveness of the governor, a
simulator was implemented in python. This program takes as
input a core configuration file which describes the voltage
and frequency levels at which the cores and clusters of a
system operate, as well as a trace file of the amount of
new work introduced at every timestep. Using the governor
implementation below, the simulator chooses a configuration
state and calculates the work done and power consumed based
on this state. The power model used is as follows,

Pstatic = Pona

CPU load
100 .
. SOJ “
S
~ 60 =
° — CPUO
9 401 — crn1
20H — CPU2 i
— CPU3
00 10 20 30 40
Time (s)
Hardware state
§ 4000 ‘ :
s 3500}
= 3000}
2 25001
g 20001
9 15001
E 1000
o 500f
Q 0
0 10 20 30 40
Time (s)
45 Core count and cluster
4:0 I Low-power
3.5 High-power
$ 3.0
S 2.5
S 2.0
=15
1.0
0.5
0'00 10 20 30 40
Time (s)
Fig. 5. Model-based governor in action: changes in hardware state through
time.

determined by the configuration file,

P, cluster dynamic — P dyn_on * f cluster * U,

and

Pcore i dynamic — den_on * fcore i *aQ,
with total power being

NC Ni
P= Pbase"‘z
=1

j=1

where N¢ is the number of clusters, and NV, is the number of
cores in cluster ¢. All of the parameters are determined either
from the configuration file or from the current state (number
of cores on and their frequencies) of the system.

The remaining work is determined based on the capacity of
the current system state, which is simply the frequency of
the cores running. At every step, the work from the trace file
is added to the remainign work, while the simulated work
completed is subtracted. The work remaining and power used
at every time step is recorded and then plotted.

Pstatic + Pcluster dynamic + E Pstatic + Pcore j dynamic

Energy consumptlon

300r == performance
250 B ondemand/auto-hotplug [
200 B modelpm

3
5 150F
& 100+
50
0 G(0.5), U(0,1) G(0.5), U(0,0.5) G(0.5), U(0.5,1) Avg
Total execution tim
100 otal execution time
“
o> 80f
€
S 60
C
£ 40}
3
g 20f
w
0

G(0.5), U(0,1) G(0.5), U(0,0.5) G(0.5), U(0.5,1) Avg

Response time

J111

), U(0,1) G(0.5), U(0,0.5) G(0.5), U(0.5,1)

Norm. avg. response time (s)
o »—- N w J> u1 m \1 oo o

Fig. 6. Comparison of energy, execution time, and response time of the
in-kernel implementation of the proposed governor with competitors.

1) Governor Algorithm: The simulated governor algorithm
is as follows: At every timestep, we check the load. If the idle
time is under 20%, we try to increase frequency. Every time
we increase frequency, we increase it to the max level possible.
Otherwise, at every time step, we attempt to keep idle time
over 30%. We search for the lowest frequency that can sustain
this workload. Additionally, these decreases in frequency must
be in steps of at least 5% of current frequency. The load of
each potential state is computed based on the capacity of the
state and multiplied by the current system load.

Figure 7 shows the results of a simulation with trace file
workload {0,0,0,0,1,1,0,0,0,.25,0,0,0}. As expected, this
graph shows power use increasing with workload. When we
have no outstanding work, our power level is at the minimum
possible. When our utilization is very high, power is at the
maximum it can be (because we scaled to the maximum
frequency levels) and stays there.

C. Instruction-level heterogeneity

Next we analyze the extent to which heterogeneity at
instruction-level holds on Tegra3. That is, we measure the
performance and power consumption of different tasks under
the same hardware configuration. Left-hand side of Figure 8
shows that a memory-bound task is less sensitive to a decrease
in frequency suggesting that it would be more energy-delay-
efficient to run it a frequency below the maximum. On
the right-hand side of Figure 8 the jumps for both cpu-
and memory-bound task confirm that the high-power core
always consumes more power than the low-power one. For the

2.5 : - : - : -
g 4
@
2
o
a
0.5 : : : J
0.0 L L L ‘ L :
0 2 4 6 8 10 12 14
Time (s)
2.0 . . ‘ . r
g
< L5 b
>
v
E 10} _
o
=
§ 05f 1
0.0 i i AN i
0 2 10 12 14
Time (s)
Fig. 7. Performance and power of the memory-bound microbenchmark for

each platform configuration

memory-bound task this effect is more pronounced, suggesting
that memory-bound tasks might be more suitable for the low-
power core.

However, we reject our hope that there exist tasks which
are more energy-delay-efficient when run on the low-power
core. The primary difference between the cores on Tegra 3
is the frequency range. The top frequency of the slower core
(475 MHz) is lower than the frequency at which memory stalls
become a bottleneck and cycles are wasted. Hence, even for
the most memory-bound workloads the high-performance core
yields the optimal energy-delay (at least at one of its operating
frequencies if not at any of them). This fact is confirmed by our
measurements for the energy-delay product for different oper-
ating points (where most optimal core was chosen whenever
choice existed) as seen in Figure 9. The measured optimums
are at 1200 MHz and 860 MHz respectively.

Given these results and since the architectures are other-
wise identical CortexA9s, we don’t expect that there exist
applications which could have an energy-delay optimum at
an operating point on the low-power core.

VI. CONCLUSION

Modern mobile devices must satisfy high resource demands
without exceeding a strict power budget. However, peak per-
formance is needed only occasionally, while increased battery
life is preferred most of the time. Rich gaming and user
interfaces require peak operating frequency, while phone calls
or media playback do not load the processor. Manufacturers
have addressed this trade-off with heterogeneous multi-core
platforms, which attempt to match the workload with the most
suitable hardware.

However, choosing the correct configuration is a challenge.
We have addressed this challenge with a model-based gover-
nor, which selects the most efficient hardware configuration by
comparing the projected energy consumption of the available

I§>5<8cution time for different clusterg 5 Power for different clusters
: @@ High-Power, CPU-bound ' ‘ ‘ ‘ ‘ ‘

. | @@ Low-Power, CPU-bound : : : ! : ’
B B High-Power, MEM-bound 3.0+ s FRT. F’."
= B Low-Power, MEM-bound ’
200+ T
G}
o L
£ 150
=1
c
o
=] L
=1
o
%
v 100
= L
3
L
50

0

0 200 400 600 800 10001200 1'60 200 400 600 800 10001200

Frequency (MHz)

Fig. 8. Performance and power for different benchmarks and cores.

Effect of instructions on energy-delay

0.10
O
& 0.08f
()
[a)
*
S 0.06f 1
>
<
Q
c
0 0.04f 1
el
() : . !
g 0.02Fl 6o CPU-bound task
S B8 memory-bound task|

I I I I I
0.005 200 400 600 800 1000 1200

Frequency (MHz)

Fig. 9. Energy-delay for different operating points and microbenchmarks.

configurations. We fitted the model to Nvidia Tegra3 platform
and implemented the governor in the Linux kernel. Our gov-
ernor does save more power than the default power manager
without increasing total computation time, however it does so
at the cost of delayed work.

We have also explored making the power model aware of
the task characteristics, however our measurements suggest
that this is not exploitable on the architecturally identical
clusters of Tegra3. Exploring this direction on a different, more
heterogeneous platform is left as future work.

VII. MILESTONES, DELIVERABLES, ATTRIBUTIONS

1) [Week 1-2][AC] Learn and control the power manage-
ment knobs on Nexus 7

2) [Week 2-3][AC] Setup power measurement configura-
tion and instruments.

3) [Weeks 4] [AC] Measure power for each hardware
configuration per cpu/mem-bound microbenchmark.

1

(1]

(2]

3

—

(4]

[5

—_

[6

—_

(7]

[8

—

(9]

4) [Week 5][MZ] Research potential workloads for evalu-
ation.

5) [Weeks 6][AC] Develop a power-model and fit it to
Tegra3.

6) [Weeks 7][AC] Implement a custom simulator and
model-based scheme proof-of-concept.

7) [Weeks 8][MZ] Implement default strategies in the
simulator for comparison.

8) [Weeks 9][AC] Implement the model-based governor in
the kernel.

9) [Week 10]J[AC] Measure, evaluate, and compare the in-
kernel implementation.

0) [Week 10][AC,MZ] Compose report.

Primary code and data delivered are:

1) in-kernel implementation of the model-based governor
2) a custom simulator with strategies implemented in it
3) measurements and fitted model for Tegra 3

REFERENCES

S. Saewong and R. Rajkumar, “Practical Voltage-Scaling
for Fixed-Priority =~ RT-Systems,” in The 9th IEEE Real-
Time and Embedded Technology and Applications Symposium,
2003. Proceedings. 1EEE, 2003, p. 106-114. [Online]. Avail-
able: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1203042http:
/fieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1203042

Q. Cai, J. Gonzélez, G. Magklis, P. Chaparro, and A. Gonzalez, “Thread
shuffling: Combining DVFS and thread migration to reduce energy
consumptions for multi-core systems,” in Low Power Electronics and
Design (ISLPED) 2011 International Symposium on, 2011, p. 379-384.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
5993670

V. Pallipadi and A. Starikovskiy, “The ondemand governor,” in
Proceedings of the Linux Symposium, vol. 2, 2006, p. 215-230. [Online].
Available: http://scourge.fr/mathdesc/documents/kernel/linuxsymposium_
procv2.pdf#page=223

G. Dhiman and T. S. Rosing, “Dynamic voltage frequency scaling for
multi-tasking systems using online learning,” in Proceedings of the 2007
international symposium on Low power electronics and design, ser.
ISLPED °07. New York, NY, USA: ACM, 2007, p. 207-212. [Online].
Available: http://doi.acm.org/10.1145/1283780.1283825

S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors,” in Low Power Electronics and Design
(ISLPED), 2007 ACM/IEEE International Symposium on, 2007, p. 38-43.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
5514266

A. Schranzhofer, J. Chen, and L. Thiele, “Dynamic Power-Aware mapping
of applications onto heterogeneous MPSoC platforms,” IEEE Transac-
tions on Industrial Informatics, vol. 6, no. 4, pp. 692 =707, Nov. 2010.
R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction,” in Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International Symposium on, 2003,
p. 81-92. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1253185

Nvidia, “Variable SMP: a Multi-Core CPU architecture for low power
and high performance,” 2011.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,
“MiBench: a free, commercially representative embedded benchmark
suite,” in 2001 IEEE International Workshop on Workload Characteri-
zation, 2001. WWC-4, Dec. 2001, pp. 3 — 14.

