A Virtual Fence Based on Infra-Red Break Beams

18-748: Final Report

Alexel Colin and Nishant Parekh

05,/05/2015

1 Abstract

Industrial automation often requires the motion of
machines or robots to be confined to a designated
area for safety of human workers that share the floor
space. A virtual fence constructed out of wireless sen-
sor nodes equipped with infra-red transmitters and re-
cewers provides a cheap and flexible mechanism for
monitoring crossings into and out of a designated re-
gion. A body that moves across the region boundary
obstructs the line-of-sight path between sensor nodes
and breaks the infra-red break beam. The boundary
crossing event can be used to activate a fail-stop mech-
anism on the machine and to notify the operators.
We present the design and implementation of the hard-
ware and software components of a virtual fence sys-
tem as an application of a wireless sensor networking
platform based on the Firefly node and Nano-RK op-
erating system.

2 Introduction

For safety and security it is often necessary to restrict
the motion of machines or humans to the interior or
the exterior of a designated area. For example, in
large modern factories, the floor space is divided into
lanes for vehicles and paths for pedestrians in order
to avoid collisions while maintaining flexible mobility
and reasonable throughput. Similarly, in areas where
robots operate alongside human workers, the mobile
robots must be confined to areas which are off limits
to humans and vice-a-versa in order to prevent ac-
cidents. However, a demarcation alone without any
enforcement mechanism provides limited protection
for the same reason that traffic rules cannot eliminate
road accidents. A driver’s error or a malfunction in
a mobile robot may lead to a transgression beyond
a demarcated boundary and cause an accident. The
objective of the present project is to design and pro-
totype a boundary enforcement mechanism that is
cheap, flexible, robust, and simple to deploy.

A baseline enforcement mechanism is a physical

>

i

e O bl

Figure 1: A virtual fence confining a robot to an area,
implemented using wireless sensor nodes with infra-
red beams.

fence made out of a rigid material that can contain a
vehicle or a machine by force. This mechanism pro-
vides high safety but is very inflexible and may con-
strict mobility inside the factory unnecessarily, de-
creasing production efficiency. Moreover, a physical
fence is expensive to install and to modify, which is
likely to be needed as new production lines are in-
stalled and old ones upgraded. A wirtual fence with
easily movable poles is an alternative that trades off
the level of safety guarantee in return for flexibility
and cost. The service provided by a virtual fence is to
generate a notification in the form of an electrical sig-
nal in the event that the boundary has been crossed.
This signal can then be relayed to the vehicles or ma-
chines near the breach to trigger an onboard safety
stop mechanism as well as communicated to humans
in the form of an audible or visible alert.

The goal of this project is to investigate a virtual

fence implemented using a wireless sensor network
in which nodes act as fence poles and infra-red (IR)
break beams act as fence sections. Wireless sensor
networks (WSN) are a synergy between the growing
need to embed processing and communication into
the environment and the scaling of electronic compo-
nents to ever smaller size, energy usage, and cost. A
virtual fence built using a WSN inherits the benefits
of the WSN platform: low hardware cost with negligi-
ble incremental cost per pole (per node) and inexpen-
sive deployment thanks to minimal wiring, when wall
powered, or no wiring, when battery powered. Unfor-
tunately, it also inherits the limitations of the WSN
platform: the limited lifetime of the battery, which
introduces a maintenance cost. In this project, we
rely on energy-efficient communication protocol and
hardware developed as a result of extensive research
in the WSN domain. An unique advantage of a vir-
tual fence is the versatility of the boundary crossing
event: it can be relayed across the fence network and
through a gateway to local and global networks for
alert generation and coordinate response at a higher
level, such as sending emergency personal to the lo-
cation.

The following sections first describe how a virtual
fence would be used in several operating modes, and
then present the design and implementation of the
system.

3 Operating Modes

3.1 Use case 1:
fence

Manually- specified

This use case involves using the topology of the sys-
tem created by the nodes in IR proximity of one an-
other.The nodes placed arbitarily from one another
will form a basic relative topology according to the IR
beams. This topology map can be displayed on the
Graphical User Interface. This topology now shows
possible connections to construct the fence.The user
leverages this information and constructs the fence to
secure the area In this use case there will be certain
localization and the nodes are seen as a part of the
external environment or room. The user now should
be able to form the map without actually being in
the room or observing the position of the nodes in
the room. This usecase involves incorporating the
localization information algorithm with the system.

3.2 Use case 2: Automatic maximum-
area fence

The virtual fence system supports calculating and
maintaining a fence that encloses the maximum area
given the node distribution in space. The user can
choose this mode so as to enclose the largest area pos-
sible. The fence thus formed may or may not contain
all the nodes in the system.

4 System Architecture

4.1 Overview

The virtual fence system is a cooperation of a set of
hardware and software components. The hardware
layer consists of a set of Firefly wireless sensor net-
work nodes each equipped with a custom daughter
board. Each daughter board houses an array of infra-
red transmitters and receivers. The software layer
consists of the modules that run on the target Fire-
fly node and the modules that implement the control
user interface on the host workstation. The system
architecture is summarized in Figure 2.

One of the nodes in the network performs the
function of a gateway in additional to its duties as
a regular virtual fence node. This node is connected
to a workstation via a USB interface and provides the
user console, which is a part of the control center user
interface into the system. The user interface exposes
a set of commands for setting up a virtual fence as
well as for diagnosing the system. The gateway node
is responsible for communicating with all the other
nodes to carry out the user’s commands.

The hardware and software components are de-
scribed in detail in the following sections.

4.2 Daughter board

The daughter board consists of two boards mounted
on top of each other and interconnected with four
headers along the perimeter. The schematics for the
top and bottom layers are shown in Figure 4. The
top board consists of an array of eight IR transmitters
and an array of four IR receivers. The arrangement
of the IR LEDs and receivers is shown in Figure 3.
The IR transmitters are placed in eight directions:
North, North-East, East, South-East, West, South-
West, South, and North-West. The IR receivers are
mounted in four directions: North, East, West, and
South. The bottom board contains transistors for
driving the IR LEDs, a 3:8 decoder, and a digital
compass IC. THe 3:8 decoder multiplexes three GPIO
pins in order to drive eight IR LEDs. The number of

Laptop Ul

Sends Receives

Commands

fr

Receives Data

Ferco o]

Used for discovery
and a relay for
gateway messages

om Eachnode

Sends Messages
based on Commands

Legend

Ul Display

Firefly
‘ Node >

<L

IR Link

2 way RF
Link

usBe

Daughter
Board .
Connection

Figure 2: System architecture

O D\O

O OCD\

IR Transmitter/ {
Receiver 3:8 Decoder

la Compass IC

IR Transmitter

Figure 3: Daughter board model

GPIO pins available on the Firefly platform cannot
accommodate eight lines without multiplexing. The
compass 1C interfaces with the Firefly microcontroller
using a I2C interface.

4.3 Control Center user interface

During the exploitation of the virtual fence, the user’s
primary window into the system is the control center
user interface. This software application runs on a
host machine which has a direct connection to the
gateway node via a USB wire. The primary functions
of the user interface are:

e Display the state of the system:

— Wireless link topology
Infra-red (IR) link topology

Location of the nodes on a map

Event log from the gateway node
e Accept specification of a fence from user

— as a sequence of nodes (listed in as a CLI
argument or selected on map)

— as an area indicated on the map
e Notify of fence boundary crossing events

The virtual fence node network is self-sufficient, once
setup and configured, the fence operates regardless

J1
Ly

R\

Transmitter Upper
Lewel

R11

Mo

@JZ

Output from Upper Layer
— Output toFirefly

Receiver Lower Level

Receiver Upper
Lewel

Vee

Q3
text

Input to Upper Layer
Input to Firefly

Transmitter Lower Level

Figure 4: Daughter board schematic

of whether the control center is running on the host
computer. However, if relaying of boundary crossing
events to other networks (e.g. to a wireless or wired
local area network) is desired, then this functionality
would depend on the host computer.

The control center communicates with the vir-
tual fence network, specifically, to the gateway node,
through a text-based human-readable protocol over
UART. A design goal is to be retain the ability to di-
agnose and monitor any node by connecting a termi-
nal emulator directly to its UART. The control center
would use the same interface as the human user at the
console. The text-based interfaces consists of a set of
commands, some of which are listed in Table 1. For
example, issuing the command graph prints the wire-
less link topology in DOT format, such as graph G
{1--2; 2--1; } A human user may read this
output directly on the console, and the control center
would parse it and display it in the graphical window.

In order to enable fast development and tuning of
the system, the node firmware features a persistent
configuration module for manipulating parameters at
runtime and saving/loading them from EEPROM.
This eliminates the need to reprogram the node to
change a parameter. For example, the number of
packet retransmission attempts can be inspected, mod-
ified, and saved to persistent storage, by issuing the
following commands:

> get num_retx
3

> set num_retx 5
> save

For accepting the fence specification from the user
input, the control center would translate it into a set
of commands. For example, if the user chooses the
fence poles to be the sequence of nodes 3, 1, and
4, the corresponding commands to create and tear
down a virtual fence would be fence + 3 1 4 and
fence -, respectively. Other commands and options,
mainly for development purposes, allow to manually
configure routes and to overlay a fake topology mask
to “hide” links that would otherwise be visible when
nodes are located close to each other on the bench.

4.4 IR neighbor discovery and local-
ization

A virtual fence is composed of a sequence of juxta-
posed sections. In the proposed IR fence, each sec-
tion is a break beam between two nodes in one of the
two possible directions. In order to construct and
maintain a fence, it is necessary to know the IR link
topology graph and the node locations in space. The
link topology contains the information about which
pairs of nodes can establish an IR break beam be-

Virtual Fence Control Center

Map, Topology, Fence Command Line Interface (CLI)

> whoami
ID: 2 CHAN: 17 GTW: yes
>

Event Log

rxtx: received packet

rxtx: sent acknowledgement

router: relaying packet for node 1 to next hop node 2
discover: added route to gateway

Figure 5: Virtual fence control center user interface

tween them and in which direction. The pseudo-code
in Algorithm 1 defines the procedure by which this

information is discovered autonomously by the nodes.

’ Command Description ‘ This procedure needs to be triggered by the user once
echo print the given args after deploying the fence and anytime after any node
clrled turn off all LEDs has been moved in space.
setled turn on an LED for a duration The procedure in Algorithm 1 also records the
set set option value information necessary for localization of the nodes.
get get option value The map L maps each edge in the IR topology graph
save save options to eeprom to the LED identifier by which the beam was gen-
load load options from eeprom erated and the RF signal strength (RSSI) between
whoami print node id and rf chan the sending and the receiving node. This two pieces
top configure topology mask of information are sufficient to localize the nodes up
link add link to topology mask to a translation of the whole map. First, the LED
unlink remove link from topology mask identifier is mapped to an absolute angle of the beam
save-routes | save routing table by reading the compass sensor and using the known
load-routes | load routing table layout of the IR LED transmitters on the daughter
neighbors list neighbors board (Section 4.2). Second, the RF signal strength
routes show routing table (RSSI) is mapped to a distance by using a pre-calibrated
route change a routing table entry table. ! Figure 6 illustrates how (relative) location
ping send a ping is calculated from the absolute angle of the beam, «,
graph print network topology graph and distance to the receiver, d. Algorithm 2 outlines
bc-routes broadcast routes how this information is used to assign coordinates to
mping send a ping msg all nodes in the graph relative to a reference node.

Table 1: A subset of commands provided by the con-

trol interface

This basic version of the algorithm traverses each

IThe measurement error in the distance is expected to be
high. The imprecision in node location does not fundamentally
break the virtual fence, but it does degrade the user experience
since the control center will have an inaccurate representation
of the fence poles on the map.

Algorithm 1 IR Link Discovery

function IR-DISCOVER
: s < ID of this node
G« (E,V)«+ (0,0)

Lle € E] < nil

turn on IR LED [

> IR topology graph
> Raw data for later localization

bounded wait for RF packet of type Beam-Detected
if packet Beam-Detected received from node ¢ then

1:
2
3
4:
5: for led ! in IR LED array do
6
7
8
9

V<« VUi

> add node to IR topology graph

10: E + EU(s,1) > add edge to IR topology graph
11: L[(s,4)] + (I, RSSI) > save localization data
12: turn off IR LED [

13: return G, L

14: function IR-LISTEN

15: for receiver r in IR receiver array do

16: activate IR receiver r

17: while True do

18: wait for beam detected event from any IR receiver

19: broadcast Beam-Detected packet

Figure 6: Fence pole (node) localization based on IR
LED transmitter ID, compass reading, and RF signal
strength

node only once, however a data point exists per edge,
which yields multiple location estimates per node. An
enhanced version might traverse all edges and average
the estimates.

Algorithm 2 Node Localization

1: function LOCALIZE(G = (V, E), o, d, (zr,yr))

2 Q « {r} > Start at the reference node
3 while Q # () do

4: i + Por(Q)

5: W Wui > Mark the node
6 for j € (i,j) € E do 1 IR-neighbors of i
7 Tj & x; + di’j COS (4 j

8 Y; < Yi + di)j sin (o781

9 if j # W then

10; PusH(Q, j)

4.5 Fence construction

In Use Case #1, the fence is explicitly specified by
the user as a sequence of poles, i.e. nodes. The job
of the system is then to instruct the relevant nodes
to shine IR break beams into the correct direction.
This is accomplished by sending each node a packet
with the direction of the beam, and a later packet to
verify the state of each node to confirm.

In Use Case #2, the system automatically con-
structs the maximum area fence without any input
from the user. This is accomplished by localizing the
nodes (see Section 4.4) and finding the nodes that lie
on a “hull” that encloses all the nodes. The result-
ing hull might or might not be convex, since IR links
do not exist between all nodes. The algorithm that
computes the maximum-area fence is listed in Algo-

rithm 3. 2 The procedure starts with a node s on
the hull. The specific node on the hull is determined
by the reference axis relative to which angle « is de-
fined. For a horizontal axis (east-west), the starting
node must be the node with the lowest y coordinate:
s = argmin;cy y;. An illustration of the algorithm
steps in action on example node locations and IR
links of five nodes is shown in Figure 7. A distributed
version of the same algorithm might be possible and
might be investigated within this project.

Algorithm 3 Maximum Area Fence

1: function MAX-FENCE(G = (V, E), s € V)

2 F+ 0 > Ordered set of fence nodes
3 14§

4: repeat

5 F + Fu{i} > Add node to fence
6 i 4 argminge; pyep @ik > “Rightmost”

node in CCW direction
7 until i ==r
return F

i

4.6 Networking stack

For the proposed virtual fence communication over
RF is an indispensable component of importance equal
to that of the IR component. Figure 8 outlines the
communication software stack. At the lowest layer
data transmission capability is provided by widely
used 802.15.4 radio and the B-MAC stack. On top of
BMAC is a custom RX/TX layer which implements
reliable transmission of packets over one link. The
RX/TX layer uses a receive queue to decouple packet
processing from listening in order to keep the radio
in listen mode whenever it is not transmitting, which
minimizes the risk of losing a packet because the node
was busy doing something else. The router provides
an API for sending relayed messages between any
two nodes. The API is designed such that multi-
ple independent applications can use the router si-
multaneously. For example, there may be a simple
ping-pong application task that sends ping messages
and handles pong messages running alongside the vir-
tual fence applications. It is the responsibility of the
router to discover and maintain routes, which is de-
scribed in Section 4.6.2. Also the router maintains a
hop path of a bounded length and a hop count in the
packet as it relays it.

2The algorithm is inspired by Graham’s Scan algorithm for
computing the convex hull of a set of points. As opposed to
the convex hull, the fence problem lends itself to a greedy al-
gorithm.

beom ‘ ‘

App C
beam

fence

RPC Client/Server

App A
ping-pong

Relayed messages
Route discovery and maintenance
Retries (different route)

Synchronous API

Router

RX/TX Layer

Acknowledged packets
Retransmissions
Asynchronous API

‘ BMAC ‘

‘ 802.15.4 Driver in Nano RK ‘

Figure 8: Networking stack (shaded areas indicate
custom components designed and implemented for
this project)

The two design goals that a communication stack
over the RF link must fulfill to successfully support
a virtual fence application are low latency and reli-
ability. Latency is relevant for the virtual fence in
order to detect a fence crossing and notify the safety
monitor before the misbehaving robot goes too far
out of the fenced region. Reliability is important for
a virtual fence because the fence crossing event de-
livery must happen even if some intermediate nodes
malfunctioned. Our design is optimized for low la-
tency thanks to routing according to the next hop
routing tables, which contain the next hop along the
shortest path to destination (by hop count). See Sec-
tion 4.6.2 for info on computing the shortest-path
routing tables. Our design is optimized for reliability
by acknowledging packets upon each hop at the low-
est RX/TX layer, by attempting to relay messages
multiple times (over different routes), and by healing
the routing tables when routes are determined to be
broken.

4.6.1 Router Interface

Our network supports routed messages between any
two nodes. Multiple applications (Nano-RK tasks)
can use the routing layer at the same time. The API
into our router consists of

e send message(recipient, payload, length)
e receive messages(sender, handler)

e message received signal

Figure 7: Fence construction algorithm steps in action on an example node locations and IR links

The task that uses the router API is responsible for
calling receive_ messages upon receiving the signal.
Within this call, the handler callback provided in
the second argument will be invoked for each mes-
sage. The callback receives arguments payload and
length. The send message is designed to be invoked
from tasks other than the router, and enqueues the
messages onto a queue, which is asynchronously pro-
cessed by the router task.

4.6.2 Network Discovery and Routing Table
Calculation

The router relays messages based on a routing tables
that it maintains on each node. The routing table
is a map from the destination node ID to the next
hop neighbor node ID. There is an entry per each
node ID in the network. Although this is not scalable
in general, it is sufficient for small networks. The
routing tables for all nodes are computed centrally
from the complete network topology graph and then
distributed to the nodes. This computation consists
of running Dijkstra’s shortest path algorithm with
unit weights once per node and each time setting the
routing table entry to the first hop from the short-
est path. The advantage of the centralized approach
is its extensibility to more complicated routing al-
gorithms which operate on the full topology graph,
such as energy-aware algorithms which balance the
traffic across nodes. To make use of another routing
algorithm, only the algorithm routing itself needs to
be substituted without any change to the router and
route distribution code. A disadvantage is that the

complete graph must be gathered on one node before
routes can be computed, which is a time consuming
and potentially costly process. We mitigate this prob-
lem through a local route healing mechanism that can
update the routing table locally, eliminating the need
for frequent global route re-computations. The route
computation happens on the gateway node according
to Algorithm 4.

4.6.3 Route Healing

For robustness, each router maintains its routing ta-
ble by “healing” broken paths. This happens each
time a message relay attempt fails at the router layer,
which implies that a packet transmission had failed
to receive an ack despite several re-transmission at-
tempts. For example, if a node A gets a message to
C from D, and A’s routing table says that the next
hop to C is B, then A sends the packet to B, but B
is dead. If A does not succeed in relaying the packet
to B (no ack), then A updates its routing table to
no longer list B as the next hop for C. Instead, A
picks a neighbor X from its neighbor list (other than
B and other than the packet source node D) and sets
the routing table entry for C to this neighbor X. 3
On next message transmission attempt, A will not
forward it to B but to the different neighbor X.

3Currently, the choice of neighbor is random, but in the
future it could be based on last heard time and RSSI, both of
which are tracked.

Algorithm 4 Route Discovery

1: function MAINTAIN-ROUTES
2: v+ 0 > Distinguish runs of the discovery procedure
3: while True do
4: v < v + 1 DISCOVER-ROUTES(v)
5: sleep for the rest of the period
6: function DISCOVER-ROUTES(v)
7. G+« (V,E)=(0,0) > Topology graph
8: broadcast Discover(v, this node ID) packet
9: while elapsed time < route discovery timeout do
10: wait for Discovered packets
11: P <« hop path extracted from the packet
12: for node ¢ in path P do
13: V«Vui
14: E+ EU(i,i+1)
15: R + COMPUTE-ROUTING-TABLES(G) > Invoke Dijkstra’s algorithm
16: broadcast Routes(R) packet
17: function LISTEN-FOR-DISCOVERY
18: discovered + 0 > Reset the mark (will store discovery version)
19: while True do
20: wait for Discover(v, g) packets from any node s
21: RoutingTable[g] + s > Needed for relaying
22: send a Discovered response back to s
23: broadcast Discover(v) > Propagate to neighbors
24: discovered + v > Mark the node for this iteration
25: function RELAY-DISCOVERY
26: while True do
27: wait for Discovered packets from any node s
28: relay the packet to g by sending it to RoutingTable[g]
29: function LISTEN-FOR-ROUTES
30: V0 > At boot time route table version is invalid
31: route table < ()
32: while True do
33: wait for Routes(v, R) packets
34: if v >V then
35: RoutingTable <— R[node ID of self]
36: Vo > Bump route table version

5 Challenges

Our implementation and testing of the virtual fence
prototype system has uncovered several design and
implementation challenges that an engineer charged
with a similar task might find useful. These chal-
lenges and the relevant design choices are documented
in this section.

5.1 Sensitivity of the IR sensors

The infra-red sensors as explained earlier reach a peak
sensitivity for a 38 kHz carrier wave frequency. Ini-
tially we designed circuit and software to achieve this
peak frequency for best performance. However, the
highest sensitivity turned out to not be desirable for
the virtual fence application. At their highest sensi-
tivity, the receivers detect a signal from the IR, LEDs
mounted on the node which point away from the re-
ceivers. This false-positive beam detection error is
undesirable in the fence formation logic. Further-
more, the receiver detection logic appears to be based
on the change in ambient IR intensity. The change
is highest when an IR LED (including one on the
same board as the receiver) is first turned on. This
is favorable for detecting an incoming IR beam, but
exacerbates the false-positives described above.

To mitigate this issue, we have changed the car-
rier frequency to 50KHz, which reduced the receiver
sensitivity to 20% of the peak. In addition, we en-
closed the receivers in a plastic heat-shrink tube with
an opening in order to attenuate signals coming from
anywhere but outside of the board.

5.2 Magnetic interference

To localize the nodes on a map, a digital magnetome-
ter (compass) was mounted on each daughter board.
The compass provides a heading value, which indi-
cates the orientation of the node relative to the mag-
netic north of the Earth. The compass is affected sig-
nificantly by stray magnetic fields and proximity to
ferro-magnetic objects, including batteries attached
to the Firefly node at the bottom side of the board.
This interference manifests in highly inaccurate read-
ings that are hardly correlated with the orientation
of the node.

To reduce the amount of interference, we have re-
moved the batteries from the holder and placed them
in a holder that could be placed a few centimeters
away from the node and connected by wires. Never-
theless, the accuracy of the readings as compared to
a digital compass in a smart phone had an error on
the order of 20-30 degrees in the best-case locations,

10

and was unusable in some locations.

6 Potential Improvements

6.1 Fault-tolerant fence

A virtual fence may be made robust against node
failures and persist in monitoring a region at least
within the originally specified region should a failure
occur. Consider a “fence section,” i.e. a beam, from
node A, which actuates an IR transmitter, to node B,
which senses the IR signal. Node A can monitor the
state of node B using RF connectivity, and choose
a different peer automatically should B fail. With a
large network of nodes spread throughout an area,
the same bounded region may be enclosed by many
potential sets of beams. In this case, the monitored
region would remain roughly unchanged despite the
reconfiguration of the individual beams that make up
the fence.

6.2 Two-way fence

A two way fence calls for two break beams formed by
infra-red LEDs and receivers on the two nodes. They
could indicate a sense of direction of the boundary
crossing: into the region or out of the region. This
information could help in choosing the most appro-
priate corrective action. The redundancy that comes
with two beams also improves the robustness of the
fence, which can continue operating despite a failure
in one of the two beams.

6.3 Ultra-sonic ranging for localization

We used a combination of RSSI and compass to lo-
calize the nodes on a map. We observed in an indoor
environment the RSSI readings were very imprecise.
An ultra-sonic transceiver pair on each node would
provide an accurate measurement of the distance be-
tween two nodes and yield better localization. Al-
though the ultra-sound consumes a relatively large
amount of power, it would only be used once per a
pair of nodes. These types of transceivers are com-
monly used in small mobile applications for obstacle
detection, which makes them suitable for the pro-
posed virtual fence application.

6.4 Digital control of IR intensity

In our implementation an analog potentiometer is
used as a knob to control the intensity of the IR
LED. An alternative design based on a digital POT
IC could enable to control intensity on all nodes in

Distance (m)
w
T
i

0 i i i i i i i

IR Intensity (%)

Figure 9: Maximum distance between nodes forming
an infra-red beam as a function of intensity of the
infra-red transmitter.

the network from the control center user interface via
the gateway node. This would improve usability and
reduce deployment time.

7 Results

A sequence of experiments were conducted in order
to quantitatively assess the quality and limitations of
the virtual fence system. The results are presented
in this section.

7.1 Node separation distance

The maximum separation distance between two “fence
poles,” i.e. nodes, is constrained by the distance at
which the IR signal from the transmitting LED can
be detected. This, in turn, is determined by the in-
tensity of the IR transmission and the sensitivity of
the IR receiver. This section presents results from
two experiments that quantify both effects.

7.1.1 IR transmitter intensity

The IR transmission distance is a function of the in-
tensity of the transmitter (IR LED), which is deter-
mined by the current sourced through the LED. Our
design allows the user to control the intensity by a
potentiometer mounted on the top side of the daugh-
ter board. Figure 9 shows the relationship between
the intensity of the LED set by the potentiometer
and the measured maximum distance of the receiv-
ing node, measured indoors.

11

7.1.2 IR receiver sensitivity

The distance at which the IR signal can be detected
depends on the sensitivity of the IR receiver IC, which
is a function of the frequency of the signal. The sen-
sors used in our prototype reach their peak sensitiv-
ity for a carrier wave at 38kHz. Our software and
hardware design permits the user to control the car-
rier frequency by setting a parameter in the control
center console. This parameter sets the timer period
for the timer that drives the transistor that switches
the LED. In the experiment presented in Figure 10
we varied the frequency and measured maximum dis-
tance at which the signal is received, while holding
the transmission intensity constant. For comparison,
the figure also reproduces the relationship between
carrier frequency and sensor sensitivity provided in
the datasheet for the receiver IC.

7.2 Compass heading precision

To localize the nodes on a map, the system requires
an absolute orientation of each node. Our design
relies the heading calculated from magnetic inten-
sity readings performed by a compass IC, which is
mounted on each daughter board. The accuracy of
localization directly depends on the accuracy of the
heading. Figure 11 quantifies the precision and accu-
racy in the heading as compared to a reference dig-
ital compass in a smart-phone. In the figure, the
data from an ideal compass would be on the line
x = y. Deviations from that line indicate an error
in the readings. The observed error can approach
50 degrees. Although not shown in the figure, the
observed readings are precise: low variability across
multiple readings while the node is held stationary.
Our observations of the performance of the compass
cast doubt on whether a commodity digital compass
is an appropriate choice for this indoors application.

7.3 Power consumption

The longer a virtual fence can be active without a
replenishment of batteries, the more practical is the
system. To quantify the energy requirements of our
prototype, we measured the current drawn by the
Firefly node and the daughter board with a multi-
meter. Table 2 lists the total power consumption in
the idle state without any IR beams and in active
state in which the node transmits a beam and re-
ceives another beam. At an average node separation
of 2 meters, this corresponds to about one week of
active operation on two AA batteries (2500 mAh).

7.0

1.2
6.5}
> 1.0
6.0 = /\
2
550 g 08
(7]
_ g [\
Esof
g - 0.6 \
S [an
® 45+
8 ‘e 0.4 / \N
40t <
: c o
£ op f=f, 5%
350 WL Af(3dB)=f/10
3.0+ 0.0 | ‘
. ‘ ‘ ‘ ‘ 0.7 0.9 1.1 1.3
25 30 35 40 45 50 16925 f/fg - Relative Frequency

Modulation Carrier Frequency (kHz)

(a) Measured (b) Datasheet

Figure 10: Maximum distance between nodes as a function of carrier frequency of the modulated infra-red
signal

30T Node 1 |
+++ Node 3
300F| | 1| Node 4 ; 4

——— Node 6 -

250+

200 . 4

\
~
o

Measured Heading (deg)

%
1501 ¥ J
T

~
o
T

100} .]

\
\
=)
a
T

50+ e R

o
=]
T

.
0 50 100 150 200 250 300 350
Reference Heading (deg)

Total power (mW)
(%))
sl
T

o
S
T

Figure 11: Accuracy and precision of the node ori-
entation given by the digital compass plotted against
the reference from the compass in a smart phone (Mo- 2
torola Droid Mini).

I
o
T

35 i i i i i i
0 2 4 6 8 10 12 14

IR Intensity (%)

Figure 12: Total power consumption of the device as
a function of intensity of the infra-red transmitter

State Power (mW)
Idle state 15
Active state 40-75

Table 2: Total measured power consumption of the
device in different operating modes.

12

7.4 Computational resources

To be useful the virtual fence application must be
able to run on small platforms with limited memory
and processing power. Table 3 lists the ROM and
RAM memory required by each of the major com-
ponents of the application. The total of 121KB of
ROM and 12KB of RAM uses 95% and 75% of the
flash memory and SRAM, respectively, available on
the Atmegal28RFA1 microcontroller in the Firefly
platform. The ROM memory demand may be signif-
icantly reduced by eliminating diagnostic log output
code and message strings. Processing capacity is not
a bottleneck for the virtual fence application. The
Atmegal28RFA1 microcontroller running at 8MHz
is sufficient to support 5 application tasks, 3 infras-
tructure tasks, 5 networking tasks, and 2 MAC-layer
tasks.

8 Demonstrations

We would be having two demos during the course
of the project. An intermediate demo at the end of
march and a Final demo at the end of the semester.

8.1 Intermediate demo

The intermediate project report demonstrated the
discovery of radio connectivity topology and one sec-
tion of the virtual fence formed by two nodes in ac-
tion. The control center user interface displayed the
graph of the radio connectivity between all nodes in
the network and the state of a beam formed between
two nodes.

8.2 Final demo

The final demo included the following scenarios:
Scenario 1:

1. The user would place the nodes in a room.

2. The connection between the nodes is displayed
on the UI to the user.

3. The user then chooses a sequence of fence poles
in the UL

4. The resultant fence is formed.

5. The fence detects an intrusion and generates a

notification.
Scenario 2:

1. The first two steps will be the same as in Sce-
nario 1.

13

In this scenario the max area mode is set and
fence is computed.

The fence is displayed to the user on the UI.

The fence is able to detect an intrusion and gen-
erate a notification.

9 Schedule

The project schedule and work distribution are listed
in Table 4.

10 Conclusion

A system for constraining industrial machines or robots
to a safe designated area can be constructed using a
wireless sensor network of nodes that form a virtual
fence out of infra-red break beams. The prototyped
system consists of five Firefly nodes each equipped
with a custom daughter board with eight infra-red
transmitters and four receivers. The user can spec-
ify a virtual fence in the control center user inter-
face as a sequence of “poles” (nodes) or as an auto-
matically determined maximum area enclosure and
monitor the node and beam state on a graphical dis-
play. Once formed, the virtual fence monitors the
region boundaries and generates an alert in the user
interface. The system design choices, challenges, and
potential improvements were documented in this re-
port. The prototype built was used to experimentally
evaluate key aspects of the virtual fence application,
including maximum node separation and power con-
sumptions. The system was demonstrated in action
during a project showcase.

Table 3: Code size and memory requirements of the virtual fence application.
console, persistant parameter store, led indicator pulsing, ping-pong diagnostics, and basic data structures.

Component Size (lines) | ROM (KB) | RAM (KB)
Nano-RK OS, drivers, BMAC (*) 23000 23.134 0.971
Networking stack 3008 70.43 6.255
12C driver (*) 751 0.420 0.019
Infrastructure 3239 45.886 2.604
Fence application 3112 31.642 3632
Total 33110 121 12

All components without a (*) have been designed and implemented within this project.

Infrastructure includes

’ Start \ Completion \ Activity Description \ Responsible ‘

02/01 | 02/10 Initial understanding and feasibility of the project Both

02/11 | 03/15 Hardware daughter board design Nishant

02/11 | 03/15 Routing layer and simulator for development purposes | Alexei

03/15 | 03/31 Daughter board assembly Both

04/01 | 04/15 Discovery of IR topology and localization Alexei

03/15 | 04/15 Algorithms for constructing fences for all use cases Both

04/15 | 04/30 Experimental evaluation Nishant

04/30 | 05/05 Testing and tuning Both

Table 4: Schedule and work Division

14

